Autotuning Halide
schedules with
OpenTuner

Jonathan Ragan-Kelley
(Stanford)

We are surrounded by computational cameras

Enormous opportunity,
demands extreme optimization

parallelism & locality limit
performance and energy

We are surrounded by computational cameras

Enormous opportunity,
demands extreme optimization

parallelism & locality limit
performance and energy

Camera: 8 Mpixels I
(96MB/frame as float)

CPUs: 15 GFLOP/sec
GPU: 115 GFLOP/sec

We are surrounded by computational cameras

Enormous opportunity,
demands extreme optimization

parallelism & locality limit
performance and energy

Camera: 8 Mpixels I
(96MB/frame as float)

CPUs: 15 GFLOP/sec
GPU: 115 GFLOP/sec

Required
arithmetic > 40:1
Intensity

A realistic pipeline: Local Laplacian Filters

COPY

level size
w X h

DOWN‘

w h

772
DOWN;)UP

. The algor'ithm uses 8 pyram'id levels s

[Paris et al. 2010, Aubry et al. 2011]

— oo ADDI
DOWN

DDA . ADD
I [

DOWN
om A

LUT: look-up table
O(x.y,k) <= lut(I(x,y) — ko)

UP: upsample
T (2x,2y) < I(x,y)
I<T ® [1331]
O<T,® [1331]

DDA

ADD: addition
O(x,y) <= I (xy) + 1(x.y)

DOWN: downsample
T, < 1® [1331]
T,<T,® [1331]
O(x,y) <= T (2x,2y)

SUB: subtraction
O(x,y) <= I (xy) - L(x.y)

DDA: data-dependent access
k < tloor({ (x,y) / ©)
o< ([(xy)/0)-k
O(x,y) <= (1-a) L(x,y.k) + o I (x,y,k+1)

wide, deep, heterogeneous
stencils + stream processing

Local Laplacian Filters
in Adobe Photoshop Camera Raw / Lightroom

Histogram v

20mm /17 1/20s6c

1500 lines of expert-

optimized C++
multi-threaded, SSE

3 months of work

10x faster than reference C

eeeeee

Local Laplacian Filters
in Adobe Photoshop Camera Raw / Lightroom

Histogram ¥

1500 lines of expert- [. 5 O8O
optimized C++ ' -

multi-threaded, SSE
3 months of work

10x faster than reference C

Local Laplacian Filters
in Adobe Photoshop Camera Raw / Lightroom

Histogram ¥

ISO 400 20 mm /1.7 1/20 sec

Ml Q ¥ =) ~
]] B o e - L —
LHH o’ lmi

1500 lines of expert-

optimized C++ .
multi-threaded, SSE ee——a
3 months of work o e
10x faster than reference C il S

Local Laplacian Filters
in Adobe Photoshop Camera Raw / Lightroom

Histogram ¥

1500 lines of expert- —
optimized C++
multi-threaded, SSE o

-~ -.. - ":""‘ ; one to
3 months Of Work | Xposure L 0.00
' ontrast -

10x faster than reference C

2x slower than another ==
organization (which they —

couldn’t find)

Halide

a new language & compiler for image processing

Halide

a new language & compiler for image processing

1. Decouple algorithm from schedule

Algorithm: what is computed
Schedule: where and when it's computed

Halide

a new language & compiler for image processing

1. Decouple algorithm from schedule

Algorithm: what is computed
> Schedule: where and when it's computed

- we want to autotune this

The algorithm defines pipelines as pure functions

Pipeline stages are functions from coordinates to values

Execution order and storage are unspecified

The algorithm defines pipelines as pure functions

Pipeline stages are functions from coordinates to values

Execution order and storage are unspecified

3x3 blur as a Halide algorithm:

blurx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
blury(x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/3;

Halide

a new language & compiler for image processing

1. Decouple algorithm from schedule

Algorithm: what is computed
Schedule: where and when it's computed

Halide

a new language & compiler for image processing

1. Decouple algorithm from schedule

Algorithm: what is computed
Schedule: where and when it's computed

2. Single, unified model for all schedules

Halide

a new language & compiler for image processing

1. Decouple algorithm from schedule

Algorithm: what is computed
Schedule: where and when it's computed

2. Single, unified model for all schedules

Simple enough to search, expose to user
Powerful enough to beat expert-tuned code

The schedule defines intra-stage order, inter-stage interleaving

input

[blurx J

|

[blury J

The schedule defines intra-stage order, inter-stage interleaving

For each stage:

input
1) In what order should we npu
compute its values? ‘
~ blurx |

|

[blury J

The schedule defines intra-stage order, inter-stage interleaving

For each stage:

input
1) In what order should we
compute its values?
split, tile, reorder, vectorize,
unroll loops
[blurx J

[blury J

The schedule defines intra-stage order, inter-stage interleaving

For each stage:

input

1) In what order should we
compute its values?

split, tile, reorder, vectorize,
unroll loops

2) When should we
compute its inputs?

[blurx J

[blury J

The schedule defines intra-stage order, inter-stage interleaving

For each stage:

input

1) In what order should we
compute its values?

split, tile, reorder, vectorize,
unroll loops

2) When should we
compute its inputs?
level in loop nest of

consumers at which to
compute each producer [blury J

[blurx J

Schedule primitives compose to create many organizations

blur x.compute at root()

redundant
work

locality

parallelism

blur x.compute_at(blury, Xx)

redundant
work

locality

parallelism

blur_x.compute at(blury, x)
.store_at_root()

redundant
work

locality

parallelism

blur_ x.compute at(blury, x)
.vectorize(x, 4)

blur y.tile(x, y, xi, yi, 8, 8)

.parallel(y)
.vectorize(xi, 4)

redundant
work

locality

parallelism

blur_x.compute_at(blury, y)
.store_at_root()
.split(x, x, xi, 8)
.vectorize(xi, 4)
.parallel(x)

blur_y.split(x, x, xi, 8)
.vectorize(xi, 4)
.parallel(x)

redundant
work

locality

parallelism

blur_ x.compute_at(blury, y)
.store_at(blury, yi)
.vectorize(x, 4)

blur y.split(y, y, yi, 8)
.parallel(y)
.vectorize(x, 4)

redundant
work

locality

parallelism

Schedule primitives compose to create many organizations

N blurx
redundant locality
work
parallelism
N blurx
redundant locality
work

parallelism

blury

blury

iN

18

redundant
work

redundant
work

blurx

parallelism

blurx

parallelism

locality

locality

blury

blury

redundant
work

redundant
work

blurx

parallelism

blurx

parallelism

locality

locality

blury

blury

A trivial Halide program

a(x, y) = in(x, y);
b(X) y) = a(X: y)3
C(X: y) = b(X) y)3

a(x, y) = in(x, y);
b(X) y) = a(XJ y)3
C(X: y) = b(XJ y)3

Schedules are complex
split

reorder / reorder_storage
vectorize / parallel
compute_at / store_at

A trivial Halide program

a.split(x, x, x0, 4)
.split(y, y, y1, 16)
.reorder(yl, x0, y, X)
.vectorize(yl, 4)
.compute at(b, y);

b.split(x, x, x2, 64)
.reorder(x2, x, Vy)
.reorder _storage(y, Xx)
.vectorize(x2, 8)
.compute at(c, x4);

c.split(x, x, x4, 8)

.split(y, y, y5, 2)
.reorder(x4, y5, y, X)
.parallel(x)

.compute root();

a(x, y) = in(x, y);
b(X) y) = a(XJ y)3
C(X: y) = b(XJ y)3

Schedules are complex
split

reorder / reorder_storage
vectorize / parallel
compute_at / store_at

A trivial Halide program

a.split(x, x, x0, 4)
.split(y, y, y1, 16)
.reorder(yl, x0, y, X)
.vectorize(yl, 4)
.compute at(b, y);

b.split(x, x, x2, 64)
.reorder(x2, x, Vy)
.reorder _storage(y, Xx)
.vectorize(x2, 8)
.compute at(c, x4);

c.split(x, x, x4, 8)

.split(y, y, y5, 2)
.reorder(x4, y5, y, X)
.parallel(x)

.compute root();

Schedule:

A simple schedule (interleaving only)

Synthesized loop nest:

in|

A naive representation

Direct schedule encoding:

A naive representation

8 placement locations
compute_at(a, x)
compute_at(a, y)
compute_at(b, x)

Direct schedule encoding: compute_at(b, y)
compute_at(c, x)
compute_at(c, y)
compute_root()
inline

A naive representation

8 placement locations
compute_at(a, x)
compute_at(a, y)
compute_at(b, x)

Direct schedule encoding: compute_at(b, y)
compute_at(c, x)
compute_at(c, y)
compute_root()
inline

3 functions to place
(a, b, C)

A naive representation

8 placement locations
compute_at(a, x)
compute_at(a, y)
compute_at(b, x)

Direct schedule encoding: compute_at(b, y)
compute_at(c, x)
compute_at(c, y)
compute_root()
inline

3 functions to place
(a, b, C)

8° = 512 possible schedules

A naive representation
doesn’t work

Most of the space Is

meaningless
474 of 512 schedules are invalid

Exponentially worse for large
programs

Poor search space locality

small changes radically restructure
the generated loops

Fails completely for
nontrivial programs

A naive representation
doesn’t work

Most of the space Is

meaningless
474 of 512 schedules are invalid

Exponentially worse for large
programs

Poor search space locality

small changes radically restructure
the generated loops

Fails completely for
nontrivial programs

A naive representation
doesn’t work

Most of the space Is

meaningless
474 of 512 schedules are invalid

Exponentially worse for large
programs

Poor search space locality

small changes radically restructure
the generated loops

A naive representation
doesn’t work

Most of the space Is

meaningless
474 of 512 schedules are invalid

Exponentially worse for large
programs

Poor search space locality

small changes radically restructure
the generated loops

Fails completely for
nontrivial programs

A better representation

A better representation

loop order
constraints

callgraph
order

) constraints

constrained
permuted list

A better representation

loop order
constraints

—

callgraph
order

) constraints

constrained
permuted list

Results: blur

Handl-optimizedI
OpenTuner :- -®-- -

L. 2%00000000 6 00

)
-O
-
O
O
O
L2
D
=
|_
-
O
)
>
O
O,
X
LL]

200 300
Autotuning Time (seconds)

7).
-O
-
O
O
O
L
D
£
|_
-
O
e
-
O
O,
>
LL]

Results: wavelet

Hand-optimlized

OpenTuner :-

Autotuning Time (seconds)

92,
-O
-
O
O
O
L2
O,
£
|_
C
O
fd
-
O
O,
>
LL]

—h
N

—l
N

A

Results: bilateral grid

Hénd-optimized

OpenTuner :-

o
o
e

:16"

$?“o¢_"

“”"T‘QQQQQOQQQQQQ:Q:Q:

5000

Autotuning Time (seconds)

10000

15000

X386

Blur

Bilateral Grid
Camera pipeline
“Healing brush”

Local Laplacian

Speedup
1.2 X

4.4 X
3.4 X

1.7 X
1.7 X

Factor
shorter

18 X
4 X
2 X
7 X

5 X

GPU

Bilateral Grid
*Healing brush”

Local Laplacian

ARM

Camera pipeline

Speedup
2.3 X

5.9 X
9" X

Speedup
1.1 X

Factor
shorter

11 X

/* X

/" X

Factor
shorter

3 X

X386

Blur

Bilateral Grid
Camera pipeline
“Healing brush”

Local Laplacian

Speedup
1.2 X

4.4 X
3.4 X

1.7 X
1.7 X

Factor
shorter

18 X
4 X
2 X
7 X

5 X

GPU

Bilateral Grid
*Healing brush”

Local Laplacian

ARM

Camera pipeline

Speedup
2.3 X

59" x
9" X

Speedup
1.1 X

Factor
shorter

11 X

/" X

/" X

Factor
shorter

3 X

X386

Blur

Bilateral Grid
Camera pipeline
“Healing brush”

Local Laplacian

Speedup
1.2 X

4.4 X
3.4 X

1.7 X
1.7 X

Factor
shorter

18 X
4 X
2 X
7 X

5 X

GPU

Bilateral Grid
“Healing brush”

Local Laplacian

ARM

Camera pipeline

Speedup

2.3 X

5.9 x

9" X

Speedup

1.1 X

Autotuning time:
(single node)

2 hrs to 2 days

85% within < 24 hrs

Factor
shorter

11 X

/* X

/" X

Factor
shorter

3 X

X86 Speedup ;?cf:tc;
Blur 1.2 X 18 X
Bilateral Grid 4.4 X 4 X
Camera pipeline 3.4 X 2 X
*Healing brush” 1.7 X [X
Local Laplacian 1.7 X 5 X

In progress
new representation

smarter heuristic seed
schedules

GPU Speedup

Bilateral Grid 2.3 X
“Healing brush” 5.9* x

Local Laplacian 9* X

ARM

Camera pipeline 1.1 X

Speedup

Autotuning time:
(single node)

2 hrs to 2 days
85% within < 24 hrs

Factor
shorter

11 X

/* X

/" X

Factor
shorter

3 X

Halide: current status

open source at http://halide-lang.org

Google

~ 50 developers
> 10 kLOC in production

G+ Photos auto-enhance HDR+

Data center Glass

Android Nexus devices
Chrome (PNaCl)

Computational photography course (6.815)
60 undergrads

http://halide-lang.org
http://halide-lang.org

