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A realistic pipeline: Local Laplacian Filters
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LUT: look-up table
O(x.y,k) <= lut(I(x,y) — ko)

UP: upsample
T (2x,2y) < I(x,y)
I<T ® [1331]
O<T,® [1331]

DDA

ADD: addition
O(x,y) <= I (xy) + 1(x.y)

DOWN: downsample
T, < 1® [1331]
T,<T,® [1331]
O(x,y) <= T (2x,2y)

SUB: subtraction
O(x,y) <= I (xy) - L(x.y)

DDA: data-dependent access
k < tloor({ (x,y) / ©)
o< ([ (xy)/0)-k
O(x,y) <= (1-a) L(x,y.k) + o I (x,y,k+1)

wide, deep, heterogeneous
stencils + stream processing
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Local Laplacian Filters
in Adobe Photoshop Camera Raw / Lightroom
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Halide

a new language & compiler for image processing

1. Decouple algorithm from schedule

Algorithm: what is computed
> Schedule: where and when it's computed

- we want to autotune this
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The algorithm defines pipelines as pure functions

Pipeline stages are functions from coordinates to values

Execution order and storage are unspecified

3x3 blur as a Halide algorithm:

blurx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
blury(x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/3;
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Halide

a new language & compiler for image processing

1. Decouple algorithm from schedule

Algorithm: what is computed
Schedule: where and when it's computed

2. Single, unified model for all schedules

Simple enough to search, expose to user
Powerful enough to beat expert-tuned code
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The schedule defines intra-stage order, inter-stage interleaving

For each stage:

input

1) In what order should we
compute its values?

split, tile, reorder, vectorize,
unroll loops

2) When should we
compute its inputs?
level in loop nest of

consumers at which to
compute each producer [ blury J

[ blurx J




Schedule primitives compose to create many organizations

blur x.compute at root()

redundant
work

locality

parallelism

blur x.compute_at(blury, Xx)

redundant
work

locality

parallelism

blur_x.compute at(blury, x)
.store_at_root()

redundant
work

locality

parallelism

blur_ x.compute at(blury, x)
.vectorize(x, 4)

blur y.tile(x, y, xi, yi, 8, 8)

.parallel(y)
.vectorize(xi, 4)

redundant
work

locality

parallelism

blur_x.compute_at(blury, y)
.store_at_root()
.split(x, x, xi, 8)
.vectorize(xi, 4)
.parallel(x)

blur_y.split(x, x, xi, 8)
.vectorize(xi, 4)
.parallel(x)

redundant
work

locality

parallelism

blur_ x.compute_at(blury, y)
.store_at(blury, yi)
.vectorize(x, 4)

blur y.split(y, y, yi, 8)
.parallel(y)
.vectorize(x, 4)

redundant
work

locality

parallelism



Schedule primitives compose to create many organizations
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A trivial Halide program
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Schedules are complex
split

reorder / reorder_storage
vectorize / parallel
compute_at / store_at

A trivial Halide program

a.split(x, x, x0, 4)
.split(y, y, y1, 16)
.reorder(yl, x0, y, X)
.vectorize(yl, 4)
.compute at(b, y);

b.split(x, x, x2, 64)
.reorder(x2, x, Vy)
.reorder _storage(y, Xx)
.vectorize(x2, 8)
.compute at(c, x4);

c.split(x, x, x4, 8)

.split(y, y, y5, 2)
.reorder(x4, y5, y, X)
.parallel(x)

.compute root();
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Schedule:

A simple schedule (interleaving only)

Synthesized loop nest:

in|
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A naive representation

8 placement locations
compute_at(a, x)
compute_at(a, y)
compute_at(b, x)

Direct schedule encoding: compute_at(b, y)
compute_at(c, x)
compute_at(c, y)
compute_root()
inline

3 functions to place
(a, b, C)

8° = 512 possible schedules
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doesn’t work
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Exponentially worse for large
programs

Poor search space locality

small changes radically restructure
the generated loops

Fails completely for
nontrivial programs
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Results: blur

Handl-optimizedI
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Results: wavelet

Hand-optimlized

OpenTuner :-
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Results: bilateral grid
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X86 Speedup ;?cf:tc;
Blur 1.2 X 18 X
Bilateral Grid 4.4 X 4 X
Camera pipeline 3.4 X 2 X
*Healing brush” 1.7 X [ X
Local Laplacian 1.7 X 5 X

In progress
new representation

smarter heuristic seed
schedules

GPU Speedup

Bilateral Grid 2.3 X
“Healing brush” 5.9* x

Local Laplacian 9* X

ARM

Camera pipeline 1.1 X

Speedup

Autotuning time:
(single node)

2 hrs to 2 days
85% within < 24 hrs

Factor
shorter

11 X

/* X

/" X

Factor
shorter

3 X



Halide: current status

open source at http://halide-lang.org

Google

~ 50 developers
> 10 kLOC in production

G+ Photos auto-enhance HDR+

Data center Glass

Android Nexus devices
Chrome (PNaCl)

Computational photography course (6.815)
60 undergrads


http://halide-lang.org
http://halide-lang.org

