Autotuning Halide schedules with OpenTuner

Jonathan Ragan-Kelley
(Stanford)
We are surrounded by computational cameras

Enormous opportunity, demands extreme optimization
parallelism & locality limit
performance and energy
We are surrounded by computational cameras

Enormous opportunity, demands extreme optimization
parallelism & locality limit
performance and energy

Camera: 8 Mpxels
(96MB/frame as float)

CPUs: 15 GFLOP/sec

GPU: 115 GFLOP/sec
We are surrounded by computational cameras

Enormous opportunity, demands extreme optimization
parallelism & locality limit
performance and energy

Camera: 8 Mpixels
(96MB/frame as float)

CPUs: 15 GFLOP/sec

GPU: 115 GFLOP/sec

Required arithmetic intensity > 40:1
A realistic pipeline: Local Laplacian Filters
[Paris et al. 2010, Aubry et al. 2011]

The algorithm uses 8 pyramid levels:

LUT: look-up table
\[O(x,y,k) \leftarrow \text{lut}(I(x,y) - k\sigma) \]

UP: upsample
\[T_1(2x,2y) \leftarrow I(x,y) \]
\[T_2 \leftarrow T_1 \otimes, [1 3 3 1] \]
\[O \leftarrow T_2 \otimes, [1 3 3 1] \]

ADD: addition
\[O(x,y) \leftarrow I_1(x,y) + I_2(x,y) \]

DOWN: downsample
\[T_1 \leftarrow I \otimes, [1 3 3 1] \]
\[T_2 \leftarrow T_1 \otimes, [1 3 3 1] \]
\[O(x,y) \leftarrow T_2(2x,2y) \]

SUB: subtraction
\[O(x,y) \leftarrow I_1(x,y) - I_2(x,y) \]

DDA: data-dependent access
\[k \leftarrow \text{floor}(I_1(x,y) / \sigma) \]
\[\alpha \leftarrow (I_1(x,y) / \sigma) - k \]
\[O(x,y) \leftarrow (1 - \alpha) I_2(x,y,k) + \alpha I_2(x,y,k+1) \]

wide, deep, heterogeneous stencils + stream processing
Local Laplacian Filters in Adobe Photoshop Camera Raw / Lightroom

1500 lines of expert-optimized C++ multi-threaded, SSE
3 months of work
10x faster than reference C
Local Laplacian Filters
in Adobe Photoshop Camera Raw / Lightroom

1500 lines of expert-optimized C++
multi-threaded, SSE
3 months of work
10x faster than reference C
Local Laplacian Filters
in Adobe Photoshop Camera Raw / Lightroom

1500 lines of expert-optimized C++
multi-threaded, SSE
3 months of work
10x faster than reference C
Local Laplacian Filters in Adobe Photoshop Camera Raw / Lightroom

1500 lines of expert-optimized C++
multi-threaded, SSE
3 months of work
10x faster than reference C
2x slower than another organization (which they couldn’t find)
Halide
a new language & compiler for image processing
Halide

a new language & compiler for image processing

1. Decouple *algorithm* from *schedule*

 Algorithm: *what* is computed
 Schedule: *where* and *when* it’s computed
Halide
a new language & compiler for image processing

1. Decouple *algorithm* from *schedule*

 Algorithm: *what* is computed
 Schedule: *where* and *when* it’s computed

we want to autotune this
The algorithm defines pipelines as pure functions

Pipeline stages are functions from coordinates to values

Execution order and storage are unspecified
The algorithm defines pipelines as pure functions

Pipeline stages are functions from coordinates to values

Execution order and storage are unspecified

3x3 blur as a Halide algorithm:

\[
\text{blurx}(x, y) = \frac{(\text{in}(x-1, y) + \text{in}(x, y) + \text{in}(x+1, y))}{3};
\]

\[
\text{blury}(x, y) = \frac{(\text{blurx}(x, y-1) + \text{blurx}(x, y) + \text{blurx}(x, y+1))}{3};
\]
Halide
a new language & compiler for image processing

1. Decouple *algorithm* from *schedule*

 Algorithm: *what* is computed
 Schedule: *where* and *when* it’s computed
Halide
a new language & compiler for image processing

1. Decouple *algorithm* from *schedule*
 - **Algorithm:** *what* is computed
 - **Schedule:** *where* and *when* it’s computed

2. Single, unified model for *all* schedules
Halide
a new language & compiler for image processing

1. Decouple *algorithm* from *schedule*

 Algorithm: *what* is computed

 Schedule: *where* and *when* it’s computed

2. Single, unified model for *all* schedules

 Simple enough to search, expose to user

 Powerful enough to beat expert-tuned code
The schedule defines intra-stage order, inter-stage interleaving, showing pipeline and domain. The schedule specifies:

- interleaving (up/down)
- order (across domain)

How we specify choices:

- order of domain (loop synthesis)
- granularity at which to allocate, store, and reuse values (loop level)
- granularity at which to interleave computation.

- input

- blurx

- blury
The schedule defines intra-stage order, inter-stage interleaving, and specifies:

- Interleaving (up/down)
- Order (across domain)

How we specify choices:

- Order of domain (loop synthesis)
- Granularity at which to allocate, store, and reuse values (loop level)
- Granularity at which to interleave computation

For each stage:

1) In what order should we compute its values?
The schedule defines intra-stage order, inter-stage interleaving schedule specifies:
- interleaving (up/down)
- order (across domain)

how we specify choices:
- order of domain (loop synthesis)
- granularity at which to allocate, store and reuse values (loop level)
- granularity at which to interleave computation

For each stage:

1) In what order should we compute its values? split, tile, reorder, vectorize, unroll loops
The schedule defines intra-stage order, inter-stage interleaving

For each stage:

1) In **what order** should we compute its values?
 - split, tile, reorder, vectorize, unroll loops

2) **When** should we compute its inputs?
The schedule defines intra-stage order, inter-stage interleaving show pipeline and domain. schedule specifies:

- interleaving (up/down)
- order (across domain)

how we specify choices:

- order of domain (loop synthesis)
- granularity at which to allocate, store and reuse values (loop level)
- granularity at which to interleave computation

For each stage:

1) In **what order** should we **compute** its **values**?
 split, tile, reorder, vectorize, unroll loops

2) **When** should we **compute** its **inputs**?
 level in loop nest of consumers at which to compute each producer
Schedule primitives **compose** to create many organizations

```
blur_x.compute_at_root()
blur_x.compute_at(blury, x)
blur_x.compute_at(blury, x)
  .store_at_root()

blur_x.compute_at(blury, x)
  .vectorize(x, 4)
blur_y.tile(x, y, xi, yi, 8, 8)
  .parallel(y)
  .vectorize(xi, 4)
blur_y.split(x, x, xi, 8)
  .parallel(x)
  .vectorize(x, 4)
```

```
blur_x.compute_at(blury, y)
  .store_at_root()
  .split(x, x, xi, 8)
  .vectorize(xi, 4)
  .parallel(x)
blur_y.split(y, y, yi, 8)
  .parallel(y)
  .vectorize(x, 4)
```

```
blur_x.compute_at(blury, y)
  .store_at(blury, yi)
  .vectorize(x, 4)
blur_y.split(y, y, yi, 8)
  .parallel(y)
  .vectorize(x, 4)
```
Schedule primitives **compose** to create many organizations.
A trivial Halide program

// The algorithm - no storage, order
a(x, y) = in(x, y);
b(x, y) = a(x, y);
c(x, y) = b(x, y);
A trivial Halide program

// The algorithm - no storage, order
a(x, y) = in(x, y);
b(x, y) = a(x, y);
c(x, y) = b(x, y);

Schedules are complex
split
reorder / reorder_storage
vectorize / parallel
compute_at / store_at

// generated schedule
a.split(x, x, x0, 4)
 .split(y, y, y1, 16)
 .reorder(y1, x0, y, x)
 .vectorize(y1, 4)
 .compute_at(b, y);
b.split(x, x, x2, 64)
 .reorder(x2, x, y)
 .reorder_storage(y, x)
 .vectorize(x2, 8)
 .compute_at(c, x4);
c.split(x, x, x4, 8)
 .split(y, y, y5, 2)
 .reorder(x4, y5, y, x)
 .parallel(x)
 .compute_root();
A trivial Halide program

// The algorithm - no storage, order
a(x, y) = in(x, y);
b(x, y) = a(x, y);
c(x, y) = b(x, y);

// generated schedule
a.split(x, x, x0, 4)
 .split(y, y, y1, 16)
 .reorder(y1, x0, y, x)
 .vectorize(y1, 4)
 .compute_at(b, y);
b.split(x, x, x2, 64)
 .reorder(x2, x, y)
 .reorder_storage(y, x)
 .vectorize(x2, 8)
 .compute_at(c, x4);
c.split(x, x, x4, 8)
 .split(y, y, y5, 2)
 .reorder(x4, y5, y, x)
 .parallel(x)
 .compute_root();

Schedules are complex
split
reorder / reorder_storage
vectorize / parallel
compute_at / store_at
A simple schedule (interleaving only)

Schedule:

```c
a.compute_at(b, y);
b.compute_at(c, x);
c.compute_root();
```

Synthesized loop nest:

```c
for c.x:
  for b.x:
    for b.y:
      for a.x:
        for a.y:
          a[a.x, a.y] = in[a.x, a.y]
          b[b.x, b.y] = a[b.x, b.y]
    for c.y:
      c[c.x, c.y] = b[c.x, c.y]
```
A naive representation

Direct schedule encoding:

```plaintext
a.compute_at(b, y);
b.compute_at(c, x);
c.compute_root();
```
Direct schedule encoding:

```plaintext
a.compute_at(b, y);
b.compute_at(c, x);
c.compute_root();
```

8 placement locations

```plaintext
compute_at(a, x)
compute_at(a, y)
compute_at(b, x)
compute_at(b, y)
compute_at(c, x)
compute_at(c, y)
compute_root()
```

`inline`
A naive representation

Direct schedule encoding:

```cpp
    a.compute_at(b, y);
    b.compute_at(c, x);
    c.compute_root();
```

8 placement locations

- `compute_at(a, x)`
- `compute_at(a, y)`
- `compute_at(b, x)`
- `compute_at(b, y)`
- `compute_at(c, x)`
- `compute_at(c, y)`
- `compute_root()`

3 functions to place

(a, b, c)
A naive representation

Direct schedule encoding:

```c
a.compute_at(b, y);
b.compute_at(c, x);
c.compute_root();
```

8 placement locations

- compute_at(a, x)
- compute_at(a, y)
- compute_at(b, x)
- compute_at(b, y)
- compute_at(c, x)
- compute_at(c, y)
- compute_root()

3 functions to place
(a, b, c)

$8^3 = 512$ possible schedules
A naive representation doesn’t work

Most of the space is meaningless
474 of 512 schedules are invalid

Exponentially worse for large programs

Poor search space locality
small changes radically restructure
the generated loops

Fails completely for nontrivial programs
A naive representation doesn’t work

Most of the space is meaningless
474 of 512 schedules are invalid
Exponentially worse for large programs

Poor search space locality
small changes radically restructure the generated loops

Fails completely for nontrivial programs

for c.x:
 for b.x:
 for b.y:
 for a.x:
 for a.y:
 compute a()
 compute b()
 for c.y:
 compute c()
A naive representation doesn’t work

Most of the space is meaningless
474 of 512 schedules are invalid
Exponentially worse for large programs

Poor search space locality
small changes radically restructure the generated loops

```
for c.x:
  for b.x:
    for b.y:
      for a.x:
        for a.y:
          compute a()
          compute b()
    for c.y:
      compute c()
```
A naive representation doesn’t work

Most of the space is meaningless
474 of 512 schedules are invalid
Exponentially worse for large programs

Poor search space locality
small changes radically restructure the generated loops

Fails completely for nontrivial programs

```python
for c.x:
  for b.x:
    for b.y:
      for a.x:
        for a.y:
          compute a()
          compute b()
      for c.y:
        compute c()
```
A better representation
A better representation

loop order constraints

c.x
b.x
b.y
a.x
a.y
compute a()
a.end
compute b()
b.end
c.y
compute c()
c.end

constrained permuted list

callgraph order constraints
A better representation

loops order constraints

for c.x:
 for b.x:
 for b.y:
 for a.x:
 for a.y:
 compute a()
 compute b()
 compute c()
 compute a()
 compute b()
 compute c()
 compute a()
 compute b()
compute c()

callgraph order constraints

constrained permuted list
Results: blur

![Graph showing execution time vs autotuning time for blur]

- Execution Time (seconds) axis ranges from 0 to 0.03.
- Autotuning Time (seconds) axis ranges from 0 to 500.
- The graph compares Hand-optimized and OpenTuner methods.

<table>
<thead>
<tr>
<th>Autotuning Time (seconds)</th>
<th>Execution Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.005</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>200</td>
<td>0.015</td>
</tr>
<tr>
<td>300</td>
<td>0.02</td>
</tr>
<tr>
<td>400</td>
<td>0.025</td>
</tr>
<tr>
<td>500</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Results: wavelet
Results: bilateral grid
<table>
<thead>
<tr>
<th></th>
<th>Speedup</th>
<th>Factor shorter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blur</td>
<td>1.2 ×</td>
<td>18 ×</td>
</tr>
<tr>
<td>Bilateral Grid</td>
<td>4.4 ×</td>
<td>4 ×</td>
</tr>
<tr>
<td>Camera pipeline</td>
<td>3.4 ×</td>
<td>2 ×</td>
</tr>
<tr>
<td>“Healing brush”</td>
<td>1.7 ×</td>
<td>7 ×</td>
</tr>
<tr>
<td>Local Laplacian</td>
<td>1.7 ×</td>
<td>5 ×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Speedup</th>
<th>Factor shorter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral Grid</td>
<td>2.3 ×</td>
<td>11 ×</td>
</tr>
<tr>
<td>“Healing brush”</td>
<td>5.9* ×</td>
<td>7* ×</td>
</tr>
<tr>
<td>Local Laplacian</td>
<td>9* ×</td>
<td>7* ×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Speedup</th>
<th>Factor shorter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera pipeline</td>
<td>1.1 ×</td>
<td>3 ×</td>
</tr>
<tr>
<td></td>
<td>Speedup</td>
<td>Factor shorter</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>x86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blur</td>
<td>1.2×</td>
<td>18×</td>
</tr>
<tr>
<td>Bilateral Grid</td>
<td>4.4×</td>
<td>4×</td>
</tr>
<tr>
<td>Camera pipeline</td>
<td>3.4×</td>
<td>2×</td>
</tr>
<tr>
<td>“Healing brush”</td>
<td>1.7×</td>
<td>7×</td>
</tr>
<tr>
<td>Local Laplacian</td>
<td>1.7×</td>
<td>5×</td>
</tr>
<tr>
<td>GPU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral Grid</td>
<td>2.3×</td>
<td>11×</td>
</tr>
<tr>
<td>“Healing brush”</td>
<td>5.9*×</td>
<td>7*×</td>
</tr>
<tr>
<td>Local Laplacian</td>
<td>9*×</td>
<td>7*×</td>
</tr>
<tr>
<td>ARM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camera pipeline</td>
<td>1.1×</td>
<td>3×</td>
</tr>
<tr>
<td>x86</td>
<td>Speedup</td>
<td>Factor shorter</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Blur</td>
<td>1.2 ×</td>
<td>18 ×</td>
</tr>
<tr>
<td>Bilateral Grid</td>
<td>4.4 ×</td>
<td>4 ×</td>
</tr>
<tr>
<td>Camera pipeline</td>
<td>3.4 ×</td>
<td>2 ×</td>
</tr>
<tr>
<td>“Healing brush”</td>
<td>1.7 ×</td>
<td>7 ×</td>
</tr>
<tr>
<td>Local Laplacian</td>
<td>1.7 ×</td>
<td>5 ×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GPU</th>
<th>Speedup</th>
<th>Factor shorter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral Grid</td>
<td>2.3 ×</td>
<td>11 ×</td>
</tr>
<tr>
<td>“Healing brush”</td>
<td>5.9* ×</td>
<td>7* ×</td>
</tr>
<tr>
<td>Local Laplacian</td>
<td>9* ×</td>
<td>7* ×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARM</th>
<th>Speedup</th>
<th>Factor shorter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera pipeline</td>
<td>1.1 ×</td>
<td>3 ×</td>
</tr>
</tbody>
</table>

Autotuning time:
(single node)
2 hrs to 2 days
85% within < 24 hrs
<table>
<thead>
<tr>
<th>Method</th>
<th>Speedup</th>
<th>Factor shorter</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blur</td>
<td>1.2 ×</td>
<td>18 ×</td>
</tr>
<tr>
<td>Bilateral Grid</td>
<td>4.4 ×</td>
<td>4 ×</td>
</tr>
<tr>
<td>Camera pipeline</td>
<td>3.4 ×</td>
<td>2 ×</td>
</tr>
<tr>
<td>“Healing brush”</td>
<td>1.7 ×</td>
<td>7 ×</td>
</tr>
<tr>
<td>Local Laplacian</td>
<td>1.7 ×</td>
<td>5 ×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Speedup</th>
<th>Factor shorter</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral Grid</td>
<td>2.3 ×</td>
<td>11 ×</td>
</tr>
<tr>
<td>“Healing brush”</td>
<td>5.9* ×</td>
<td>7* ×</td>
</tr>
<tr>
<td>Local Laplacian</td>
<td>9* ×</td>
<td>7* ×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Speedup</th>
<th>Factor shorter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camera pipeline</td>
<td>1.1 ×</td>
<td>3 ×</td>
</tr>
</tbody>
</table>

In progress
- new representation
- smarter heuristic seed
- schedules

Autotuning time:
- (single node)
- 2 hrs to 2 days
- 85% within < 24 hrs
Halide: current status

open source at http://halide-lang.org

Google
~ 50 developers
> 10 kLOC in production

G+ Photos *auto-enhance*
Data center
Android
Chrome (PNaCl)

HDR+
Glass
Nexus devices

Computational photography course (6.815)
60 undergrads