
Super Mario Bros. problem

Input space

I 5 buttons per frame

I 24000 frames

I 524000 ≈ 1.9× 1016775 possible input sequences

Exhaustive search won’t work here.

Tuning process

Naive Representation

I Bad, because most configurations make no sense.

I Just mashing random buttons.

I Doesn’t work at all (Video 1).

1http://youtu.be/nyYdq1jJQrw

http://youtu.be/nyYdq1jJQrw

Naive Representation

I Bad, because most configurations make no sense.

I Just mashing random buttons.

I Doesn’t work at all (Video 1).

1http://youtu.be/nyYdq1jJQrw

http://youtu.be/nyYdq1jJQrw

Better Representation

I Movements (list):
I Direction (left, right, run left, or run right)
I Duration (frames)

I Jumps (list):
I Start frame
I Duration (frames)

Choosing the right representation is critical

I Search space size 106328

I Winning run found in 13641 (≈ 104) attempts

I Under 5 minutes of training time

Better Representation

I Movements (list):
I Direction (left, right, run left, or run right)
I Duration (frames)

I Jumps (list):
I Start frame
I Duration (frames)

Choosing the right representation is critical

I Search space size 106328

I Winning run found in 13641 (≈ 104) attempts

I Under 5 minutes of training time

Better Representation

I Movements (list):
I Direction (left, right, run left, or run right)
I Duration (frames)

I Jumps (list):
I Start frame
I Duration (frames)

Choosing the right representation is critical

I Search space size 106328

I Winning run found in 13641 (≈ 104) attempts

I Under 5 minutes of training time

Super Mario Bros Results

 1000

 1500

 2000

 2500

 3000

 3500

 0 60 120 180 240 300

P
ix

el
s

M
ov

ed
 R

ig
ht

 (P
ro

gr
es

s)

Autotuning Time (seconds)

Win Level
OpenTuner

StreamJIT

Synchronous dataflow programs
are graphs of (mostly) stateless
workers with statically-known
data rates.

Using the data rates, the
compiler can compute a schedule
of worker executions, fuse
workers and introduce buffers to
remove synchronization, then
choose a combination of data,
task and pipeline parallelism to
fit the machine.

x6

input

LowPassFilter

5

1

FMDemodulator

1 (2)

1

DuplicateSplitter

6

1 x6

DuplicateSplitter

1

1 x2

LowPassFilter

1 (4)

1

LowPassFilter

1 (4)

1

RoundrobinJoiner

1 x2

2

Subtractor

2

1

Amplifier

1

1

RoundrobinJoiner

1 x6

6

Summer

6

1

output

Fusion, data-parallel fission and splitter/joiner removal

Expand

BandStop

Process

BandPass

Compress

Expand

BandStop

Process

BandPass

Compress

Adder

BandPass

Compress

Process

Expand

BandPass

Compress

Process

Expand

BandStop BandStop

Adder

AdderAdderAdderAdder

Autotuning

StreamJIT delegates its optimization decisions to OpenTuner,
which decides

I an overall schedule multiplier (to amortize synchronization)

I whether to fuse workers

I whether to remove splitters and joiners

I buffer implementations

I how to allocate fused groups to cores

Autotuning work allocation

Equal distribution across all cores is usually the best, but we need
to load-balance around stateful workers.

I Bitset per worker, one bit per core: exponentially hard to get
equal distribution (all bits set).

I Array of floats summing to 1.0, one float per core: allows
load-balancing, but equal distribution is even harder.

I Permutation of cores, total count, bias count and bias
fraction: equal division across cores, biased for load balancing.

Autotuning work allocation

Equal distribution across all cores is usually the best, but we need
to load-balance around stateful workers.

I Bitset per worker, one bit per core: exponentially hard to get
equal distribution (all bits set).

I Array of floats summing to 1.0, one float per core: allows
load-balancing, but equal distribution is even harder.

I Permutation of cores, total count, bias count and bias
fraction: equal division across cores, biased for load balancing.

Bias fraction work allocation

Use the first count cores of the permutation, moving fraction of
the work from the first bias count cores.

Doesn’t cover all possibilities, but covers the good ones.

Custom techniques

StreamJIT uses custom techniques that force the obvious defaults.

Other techniques make some good and some bad changes:

↑-↓--↑-↓↑↑-↓

Custom techniques will then force some of the bad changes back:

↑----↑-↓↑↑--

Bandit will learn to stop using the custom techniques when they
stop working or for unusual graphs where the obvious defaults are
bad.

