
 Tutorial
CGO 2015

Jason Ansel, Jeffrey Bosboom, Shoaib Kamil,
 Kalyan Veeramachaneni, Jonathan Ragan-Kelley,

Chick Markley, Tharindu Rusira, Saman Amarasinghe

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Outline

08:30 Welcome and broader context (Saman
Amarasinghe)
08:40 Introduction to OpenTuner (Jason Ansel)
09:10 Search Techniques (Kalyan Veeramachaneni)
09:35 In depth example (Jeffrey Bosboom)
10:00 Break
10:15 Applications
 Halide (Jonathan Ragan-Kelley)
 SEJITS (Chick Markley)
 JVM optimization (Tharindu Rusira)
11:00 Hands on session (Shoaib Kamil & Jeffrey
Bosboom)
11:45 Discussion 2

Observation 1: Software
Lifetime>>Hardware

• Lifetime of a software application is 30+ years

• Lifetime of a computer system is less than 6 years
• New hardware every 3 years

• Multiple Ports
• “Software Quality deteriorates

in each port
• Huge problem for the expert programmers

3

Observation 2: Too Complex to
Model

• Good old days  model based optimization
• Now

– Machines are too complex
to accurately model

– Compiler passes have
many subtle interactions

– Thousands of knobs and
billions of choices

• But…
– Computers are cheap
– We can do end-to-end execution of multiple runs
– Then use machine learning to find the best choice

4

Algorithmic Complexity

Compiler Complexity

Memory System Complexity

Processor Complexity

Tuning Sort

5

Tuning Sort

6

• Why 15?
• Dates back to at least June 2000 SGI release
• Still in current C++ STL shipped with GCC
• cutoff = 15 survived 13 years
• In the source code for millions of C++

programs
• There is nothing the compiler can do about it

Algorithmic Choice in
Sorting

7

Algorithmic Choice in
Sorting

8

Algorithmic Choice in
Sorting

9

Algorithmic Choice in
Sorting

10

Algorithmic Choice in
Sorting

11

Getting Performance Portability

• High Level Languages + standard libraries  functional
portability

• Performance tuning of applications
– Multiple knobs  set at development time with some minimal search

• Autotuning
– Can search very large spaces (ex: 101000)  better initial results
– Easy to retune  performance portability

• OpenTuner makes is possible for all
– Very simple interface
– Can easily describe the tunable knobs in your application
– Sophisticated machine learning techniques under the hood to

efficiently search for your specific problem 12

Outline

08:30 Welcome and broader context (Saman
Amarasinghe)
08:40 Introduction to OpenTuner (Jason Ansel)
09:10 Search Techniques (Kalyan Veeramachaneni)
09:35 In depth example (Jeffrey Bosboom)
10:00 Break
10:15 Applications
 Halide (Jonathan Ragan-Kelley)
 SEJITS (Chick Markley)
 JVM optimization (Tharindu Rusira)
11:00 Hands on session (Shoaib Kamil & Jeffrey
Bosboom)
11:45 Discussion 13

	Slide 1
	Outline
	Observation 1: Software Lifetime>>Hardware
	Observation 2: Too Complex to Model
	Tuning Sort
	Tuning Sort
	Algorithmic Choice in Sorting
	Algorithmic Choice in Sorting
	Algorithmic Choice in Sorting
	Algorithmic Choice in Sorting
	Algorithmic Choice in Sorting
	Getting Performance Portability
	Outline

