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Outline

08:30 Welcome and broader context (Saman 
Amarasinghe)
08:40 Introduction to OpenTuner (Jason Ansel)
09:10 Search Techniques (Kalyan Veeramachaneni)
09:35 In depth example (Jeffrey Bosboom)
10:00 Break
10:15 Applications 
  Halide (Jonathan Ragan-Kelley)
  SEJITS (Chick Markley)
  JVM optimization (Tharindu Rusira)
11:00 Hands on session (Shoaib Kamil & Jeffrey 
Bosboom)
11:45 Discussion 2



Observation 1: Software 
Lifetime>>Hardware

• Lifetime of a software application is 30+ years

• Lifetime of a computer system is less than 6 years
• New hardware every 3 years

• Multiple Ports
• “Software Quality deteriorates 

in each port
• Huge problem for the expert programmers
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Observation 2: Too Complex to 
Model

• Good old days  model based optimization
• Now

– Machines are too complex 
to accurately model

– Compiler passes have 
many subtle interactions

– Thousands of knobs and 
billions of choices 

• But…
– Computers are cheap
– We can do end-to-end execution of multiple runs 
– Then use machine learning to find the best choice
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Algorithmic Complexity

Compiler Complexity

Memory System Complexity

Processor Complexity



Tuning Sort
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Tuning Sort
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• Why 15?
• Dates back to at least June 2000 SGI release
• Still in current C++ STL shipped with GCC
• cutoff = 15 survived 13 years
• In the source code for millions of C++ 

programs
• There is nothing the compiler can do about it



Algorithmic Choice in 
Sorting
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Getting Performance Portability

• High Level Languages + standard libraries  functional 
portability

• Performance tuning of applications
– Multiple knobs   set at development time with some minimal search

• Autotuning
– Can search very large spaces (ex: 101000)  better initial results
– Easy to retune  performance portability

• OpenTuner makes is possible for all
– Very simple interface
– Can easily describe the tunable knobs in your application
– Sophisticated machine learning techniques under the hood to 

efficiently search for your specific problem 12
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